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ABSTRACT

A mathematical model is developed to predict the dynamics of the proposed
Spacecraft Control Laboratory Experiment during the station keeping phase. The
Shuttle and reflector are assumed to be rigid, while the mast connectiﬁg the
Shuttle to the reflector is assumed to be flexible with elastic deformations
small as compared with its length. It is seen that in the presence of gravity-
gradient torqﬁes, the system assumes a new equilibrium position primarily due
to the offset in the mast attachment point to the refector from the reflector's
mass center. Control is assumed to be provided through the Shuttle's three
torquers and through six actuators located by pairs at two points on the mast
and at the reflector mass center. Numerical results confirm the robustness
of an LQR derived control strategy during station keeping with maximum control
efforts significantly below saturatioﬁ levels. The linear regulator theory
is also used to deri?e control laws for the linearized model of the rigidized
SCOLE configuration where the mast flexibility is not included. It is seen

that this same type of control strategy can be applied for the rapid single
axis slewing of the SCOLE through amplitudes as large as 20 deg. These re-
sults provide a definite trade-off between the slightly larger slewing times -
with the considerable reduction in over-all control effort as compared with
the results of the two point boundary value problem (TPBVP) application of

Pontryagin's Maximum Principle. In connection with the TPBVP, a useful numer-

~ical solution procedure for minimum time, 2-D and 3-D attitude maneuvers of

a rigid spacecraft is developed and applied to the SCOLE system. Both singu-
lar and nonsingluar cases can be handled. The minimum time is determined

by sequentialiy shortening the slewing time. It is shown that one of the
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four initial costates associated with the quatefnions can be arbitrarily
selected without affecting the optimal controls, thus resulting in a simﬁli—
fication of the computatiom. Finally, a stability criterion for a controller
which operates in the continuous time domain but depends on discretized input
data is developed and relates the maximum tolerable disc;etization step size to
the damping ratio and undamped frequency of any mode in the system model. Com-
putatiqnal requirements for the estimator and controller are evaluated based

on a type 80387 microprocessor, and assuming that the pumber of actuators

and sensors are a certain fraction of the number of state components.
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INTRODUCTION

The present grant, NSG-1414, Supplement 10, represents an extension to
the research effort initiated and accomplished in previoﬁs grant years (May
1977 - March 1987) and reported in Refs. 1-14%, The attitude and shape con—'
trol of very large inherently flexible proposed future spacecraft systems is
being investigated. Possible future applications of such large spacecraft
systems (LSS) include: large scale multi-beam antenna communication systems;
Earth observation and resource sensing systems; orbitally based electronic
mail tranémission; as platforms for orbital based telescope systems; and as
iﬁ-orbit test models designed to compare the performance of flexible LSS
systems with that predicted based on computer simulations and/or scale model
Earth-based laboratory experiments. In recent years the gfant research has
focused on the orbital modei of the Spacecraft Control Labopatbry Experiment
(SCOLE) first proposed by Taylor and Balakrishnar%‘5 in 1983.

The present report is divided into six chapters. Chapter II is based on
a paper presented at the 1988 AIAA/AAS Astrodynamics Conference which describes
the development of a mathematical model to predict the dynamiés and control
of the SCOLE configuration in-orbit during station keeping. The flexibility
of the mast which connects the reflector to the Shuttle is included in the
model. 1In accordance with the SCOLE design challenge15 the attachment point
between the mast and the reflector is considered to be offset in two cartesian
directions from the mass center of the reflector. The linear regulator theory

is used to derive both orientation and mast vibration suppression control laws.

* References cited in this report are listed separately at the end of each
chapter.
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In the following chapter (Chapter III) the same linear regulator theory
techniques are applied to develop control laws of a rigid model of the SCOLE
which could be used for rapid single-axis slewing through as much as 20 deg.
These control laws could provide an attractive alternative to the slewing
strategies14 based on the two point boundary value problem associated with .
Pontryagin's Maximum Principle where a trade-off could be made between the
noticeable savings in control effort and the increased slewing times associ-
ated with the LQR aﬁplications. Chapter III is based on a paper accepted
for presentation at the 39th International Astronautical Congress in
October 1988.

Chapter IV represents a completely revised version of a paper presented
at the ATAA 26th Aerospace Sciences Meeting and desc;ibes a numerical approach
for solving general three dimensional rigid spacecraft minimum time attitude
maneuvers. In place of the total slewing time an integral of a quadratic
function of the controls is used as the cost function and allows for the
treatment of both the singUlaf and nonsingular problems in a unified way.
The resulting two point boundary value problem is developed by applying the
Maximum Principle to the system and solved by using a quasilinearization
algorithm.

In the following chapter (Chapter V) aspects of the computational
requirements for the implementation of the controller are discusséd. An
improved stability criterion for a controller, designed to function in the
continuous time domain, but which receives discretized observational inputs,
is developed. An expression for the maximum tolerable discretization step
size is derived in terms of the undémped frequency and damping ratio of

any mode in the continuous-time system model. In the second part of Chapter V
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the (on-board) compugational requirements for the estimator and controller
are evaluated based on a type 80387 microprocessor, and assuming that the
number of actuators and sensors are a cefﬁain fraction of the number of
state components.

Finally, Chapter VI describes the main general conclusions together
with future recommendations. The effort described here is being continued

during the 1988-89 grant jear in accordance with our most recent proposal.16
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II.

ORIGINAL PAGE IS
OF POOR QUALITY

THE DYNAMICS AND CONTROL OF THE ORBITING
SPACECRAFT CONTROL LABORATORY EXPERIMENT
(SCOLE) DURING STATION KEEPING

Abstract

A mathematical model is developed to predict
the dynamics of the proposed orbiting Spacecraft
Control Laboratory Experiment during the station
keeping phase. The Shuttle as well as the reflec-
tor are assumed to be rigid, the mast is flexible
and is assumed to undergo elastic displacements
very small as compared with its length. The equa-
tions of motion are derived using a Newton-Euler
formulation. The model includes the effects of
gravity, flexibility, and orbital dynamics. The
control is assumed to be provided to the system
through the Shuttle's three torquers, and through
six actuators located by pairs at two points on
the mast and at the mass center of the reflector.
At each of the locations, an actuator acts par-
allel to the roll axis while the other one acts
parallel to the pitch axis. It is seen that, in
the presence of gravity-gradient torques in the
system dynamics, the system assumes a new equili-
brium position about which the equations must be
linearized, primarily due to the offset in the
mast attachment point to the reflector. The
linear regulator theory is used to derive control
laws for the linear model of the SCOLE including
the first four flexible modes. Numerical results
confirm the robustness of this control strategy
for station keeping with maximum control efforts
significantly below saturation levels.

I. Introduction

The problem of maneuvering a flexible space-
craft while suppressing the induced vibrations is
becoming increasingly important. NASA is involved
in studies which are concerned with the.control
of flexible bodies carried by a Shuttle in an
Earth orbit. Similar experiments are being con-
ducted in Earth-based laboratories. It is then
desirable to derive a formulation which can accommo-
date both types of experiments.

NASA 1is currently involved in at least two
experimental programs to test techniques derived
for active control of flexible space structures.

In several versions of a recent paper, SCOLE1
(Spacecraft Control Laboratory Experiment), Lawrence
W. Taylor, Jr. and A.V. Balakrishnan have described
the first which is ground based. It is a labora-
‘tory experiment based on a model of the Shuttle
connected to a flexible beam with a reflecting
grillage monnted at the end of the beam (Fig. 1).

As a part of the design challenge, the authors
stressed the need to directly compare competing
control design techniques and discussed the feasi-~
bility of such a direct comparison. Concern would
be given to modeling order reduction, fault manage-
ment, stability, and dynamic systems. The second
experimental program is known as Control of Flex-
ible Spacecraft (COFS)2 and consists of experi-
ments designed to control flexible bodies carried
by a Shuttle in an Earth orbit. Because of the
cost and risks involved in testing control techni-~
ques in space, COFS includes laboratory simulations
of similar experiments which will precede the space
test. Therefore, in assuring the success of both
SCOLE and COFS, mathematical modeling and computer
simulation are required.

To accurately model and simulate flexible
spacecraft, one needs. a thorough_knowledge of its
structural behavior. In a paper”, subsequent to
the design challenge, the modal shapes and fre-
quencies for the SCOLE system were derived. In
reference 3, the SCOLE system is assumed to be
described by partial differential equations in
which the variables separate.

Undertaken in this study is the modeling of
the three dimensional dynamics of the SCOLE con-
figuration based on the Eulerian technique. This
consists in isolating an elemental mass of the sys-
tem in its deformed state and deriving its angular
momentum taken at the mass center of the Orbiter.
The position vector extending from the origin of
the coordinate system to the elemental mass of the
mast or the reflector accounts for the elastic dis-
placements. The expressions for these displace-
ments are derived from the mode shape functions
generated during the three dimensional structural
analysis of the system.

The equations obtained for the elemental mass
of the components of the system are integrated over
the mass of the entire system to yield its angular
momentum about the mass center of the Orbiter. The
derivative of the system angular momentum with re:-
spect to time is equated to the gravityegradient
(and other external) torques on the system about
the same point., Such a vectorial equation, when
projected along the three axes of rotation, yields
the system rotational equations of motion. These
rotational equations of motion are then linearized
to yield a model which provides the basis for the
control law synthesis developed in this study.

II. Angular Momentum of the SCOLE System

A. Angular Momentum of the Shuttle about its Mass
Center, G

The angular momentum of the Shuttle, taken as
a rigid body, about its center of mass, G is

2.1



> - -
- 1
Bsye = Isc Qs/u0 M
where I is the inertia tensor of the Shuttle and

§ée

Shuttle's inertial angular velocity.

B. Angular Momentum of the Beam About G

Consider an element of mass, dm, of the beam
located at some point, P, such that (Fig. 1)
GP=T,.+7

0 (2)

where T, = -zk is the position vector of P in the
underformed state; q (z,t) = u(z,t) 1+ v(z, t)j
in which, u and v are the x and y components of
the mode shape vector, respectively,.

The angular momentum of dm about G, dH M/G is
given by:
- -_ d —
dHHJG = rx-g (r) |R0 dm (3)

where
T = -zk + ul + vj _

Equation (3) may be expanded, after substitution,
to yield:

dﬁHIG = {[z(v +Qzu) + v(va-Qyu)—z2 Qx]i

+[- 2 -0,v) + u(@pu-a v) + zzﬂy]3

+ [aw+ 20) - v(e-a_v) + z(unxmy)]fc} dn  (4)
where

u(z,t) = I pn(t) st (z). and v(z,t) =
n X

£ p"(t) SB(z)
iy y

The total angular momentum of the mast about
G is obtained by integrating Equation (4) over
the total length of the mast.

5)

To simplify the notations, let

cosfL _ sinBL
£,(8) = {Ai(L -32—)
sinBL cosBL 1
+ By (L3 + aZ Er)
sinhBL coshBL
+ ¢ ( i L=
sinh8L coshBL 1
- +
+ Di (L 8 a2 Ez')}

After substitution of f, and — for p, yhere
M = mass of the mast, in the expression of
and considering only the effect of a single mégé
(for demonstration purposes here, with frequency
w) one arrives at:

2.2

ﬁM/C = % {[ﬂzcos (wt+u)f1ﬂ» sin (ut+7)£2
3 .
-Q,L7/3} 1

+ [w sin (wt+u)f1~nz cos (wt+y)f2-nyL3] 3

+ [2, cos (ue+a)f 4 cos(uein)f,] i} (6)

C. Angular Momentum of the Reflector About, G

Since small deflections are assumed for the
beam, the reflector can be assumed to be located
at a constant distance from G, the Shuttle mass
center.

Using the transfer theorem for the angular
momentum®, the angular momentum, H /G* of the
reflector, assumed rigid, about G can be expressed

as:
= (o)
1 1 IRo

-
H
where IK G,™ the inertia tensor of the re{lector
gxpresged l its center of mass, and O
R/S (respectively, the reflector's inertial

angular ve ocity, its angular velocity relative to
the Shuttle, and the Orbiter's inertial angular ve-
locity) are both expressed in the same coordinate
system, Ry, moving with the reflector.

+ MR EG X 5=

R/IG T IR/c;

D. Angular Momentum of the System About G

The angular momentum of the system about G,

is given by the sum of the angular momen-
tu é each of the thtee components evaluated about
the same point, G.

o + e + g

Rotational Equations of Motion (Torque Free)

.)

H 4
' s/

syst/G (é)

III.

The rotational equations of motion for the
system, when free of all external torques, are
obtained as:

->

B /n b

0
9
The vector equation (9) itself is equivalent to

> > ->
(Hsyst /G) IR0 Hsyst/G/S + x Bsyst/(:

H o+ ny B -0 uy =0 (roll)
Hy + Qz Hx - nx Hz =0 (pitch)
ﬁz +a Hy - ny B =0 (yaw) (10

When the gravity-gradient torques taken at the Shut-
tle center of mass are included in the equations

of motion, the linear system dynamics appear in the
following state formd:

X =ax +C [¢5))

where C is a constant and X= (w,9,¢,&,é,$)r, involv-
ing the Euler roll, pitch, and yaw angles (and their
rates), respectively.
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This indicates that the system equilibrium posi-
tion is no longer: Y, = 90 =y " 0, duc to the
offset (X,Y) in the agtachment point of the beam
to the reflector (Fig. 1).

let ¢ , 8 , and ¢ _be the equilibrium posi-
vion for this %onfiguration of the system. Then,

LA A and ¥y = 1

8-6e+n2; 9-n2

¢ = ¢ .+ ny 3 ¢ =N

. . + «T
The new state vector is [nl, “2’ n3, Ny» Ny ﬂ3] .

Also we’ ee, and ¢e satisfy

1 e ) ee t oy $e = 319
a; Yo t*oag 6, *+ 8y ¢, T -8y
a1 Vg * 8,8, F a5, " "8y

this simulataneous system is solved using
T T
[a] - [AJ [\Pe, ee’ ¢e]=, [Wea ae’ ¢e] =

(a1 (al

After substituting the new state vector in
the equations describing the system dynamics,
linearizing them about the new equilibrium posi-
tion, recasting them into state format, one
arrives_at a system which can be cast in the

form: ¥ = A'n (where ai -+ ais are constants)?®

A=
ai ai aé az ag aé
’5. ag 8y 81 3] aj
1] 1]
a3 8], 25 8¢ 3y 4g

L -

The open-loop system in this configuration is
unstable due to the unfavorsble inertia distribu-
tion.

IV. Generic Mode Equations °*%

The generic mode equations are obtained by
taking the modal components of all internal, exter-
nal and inertial forces acting on the system, i.e.,

7 ;n . fa'cm +F + 2uxr + wxr + wx(wxr) dm =
M

5% L@y, *E+e)dn (12)

vhere 3; ig the nth mode shape vector; z is a
Tincar aperator, which when applicd to q yields
the elastic force on dm, f represents the gravita-

tional force per unit mass, and e represents the
external and control forces on dm.

After substitution of the values for the in-
tegrals into Equation (12) and rearrangement of
the terms, the generic gncgie equations are obtained
in the following form:~*

. 2 -

A +uw A+ /M + T & /M =

n nn n n mn n
m=1

= [gn + g+ En]/Mn (13)

m=1
where A , w , ¢ and M are the nth modal ampli-
tude, frequency, shape functions and modal
mass, respectively.

g, the effect of gravity on the nth mode

E the effect of control and external forces
on the nth node

the coupling effect of gravity from the
mth mode on the nth mode

®on the coupling effect of elastic forces
from the uth mode on the nth mode

V. Control of the Orbiting SCOLE with
the First Four Modes Included

This model of the SCOLE is assumed to be con-
trolled through the three torquers on the Shuttle
and the six actuators located by pairs at z =~L/3;
z =-2L/3 on the mast: and at G,, the mass center of
the reflector (Fig. 1). The pairs of actuators are
arranged in such a manner that one acts along the x
direction and the other in the y direction. The
actuators, when activated to provide vibration con-
trol to the mast, will develop torques about the
Orbiter center of mass. Each actuator provides a
maximum of F_ = F_ = 800 1b.™ force; the resulting

torque contrfbutex by all six actuators is computed
as

- ~
T, = FyL (vly/3+ 2 v2y/3 + v3y) i

- FxL (le/3 + 2v2x/3 + vsx) j - (er Vax

- XF v3y)k (14)

This is added to the torques provided by the, Shut-
tle's three torquers: T

=M U 1+ 3
+M U k, vhere M =N 2. M = i‘o,ooo?!.gib.l to
yieid he total aviilable control torque for the
system as:

Tt = [, v, + F, L (v /3 + 2v, /3
+v 3y)]i+[My v, - Fxp(lela + 2v, /3

- Yv

+ v3x)]j + [Mz U, +X Fy Vay ax Fx]k (15)

2.3



" AlLA COPY SHEETS o

with the control and global state vectors, res-
pectively, chosen as

) T
U [le, Vig® Vaxr Vayr Ve Vyy u . Iy, IZ]

and X = [nl. Ngs Mys Ay Ay, Agy Ay, Ny, Ny, Mg,

. . e 8 T
Ay Ays A 4]

with ||v |]< 1; ||v lli 1; and ||u_ |]< 1, v,
represents the ;orceiXue to the ith Xcfuator in®
the x direction and similarly for v, , 1 = 1,2,3.

The control influence and the system’ state matri-
ces are obtained, respectively as:

[ 0 0
7x6 !
B= ;
14x9 Bl(F,L)X)Y) ' Bz(Mx)My;HZ) 3x3
T
0
B ! 4x%3
3 4x6 1 (16)
010 1, i 0]
A= | _00 %% L L
14x14 | N
e il X N )
i |
Ag ! AG‘ A, ! 0 an

The specific submatrices are explicitly defined in
terms of the SCOLE parameters in Ref. 5.

Here, a control, U, which minimizes the per-
formance index
«® N .
J= s (X'QX + U'RU) dt s obtained after
1)
using the ORACLS7 package to solve the steady state
Riccati matrix equatiom,

The equations describing the closed-loop sys-
tems, X = A'X + BU have been numerically inte-
grated and the corresponding mathematical model
simulated for

6 6 4 4

Q = diag. [5x10%,5x10%,5x10%,5x10%,5x10%,

& 4

sx10%,5x10%,10,10,10,10,10,10,10)]
and R as diag. [10,10,10,10,10,10,1,1,1]

Since both position and rate feedback of the Shut-
tle rotational motion and beam elastic motion will
be utilized it is logical to place a greater
penalty on the position displacements. Also,
since the roll (and to some extent the pitch) are
easier to excite than some of the elastic motions
it seems intuitively correct to relax the penalty
of the Shuttle control inputs as contrasted with
the remaining control penalty elements,

The transient responses to some initial per-~
turbations, confirm the controllability of the
flexible SCOLE system. During the simulation of
this model, the three variational attitude angles
(roll, pitch, and yaw) are each subjected to a 6°
single axis displacement., For each case, the
effects of such displacements on the modal ampli-~
tudes of the first four modes are studied.

2.4

The largest disturbance in the flexible modes,
caused by an attitude variation is observed dur-
ing the roll axis maneuver (Figs. 2-5); the first
mode 1a the most excited: its amplitude doesn't
exceed 0,13 fr. (0.1% of L). All the transients
are damped out within 25 seconds, largely due to
the contribution of the additional 2 pairs of
actuators located on the mast at z; = -L/3 and 2z =
-2L/3. During this response the reflector "y" axis
actuator provides a maximum of 21C 1b. while the
forces in the two "y" actuators located a z = -2L/3
and z=-L/3, reach 120 to 80 1b, respectively. Ths
Shuttle, "x" torquer provides a maximum of 280Cft.-
1b torque bringing to 52,500 ft.-1lb the maximum
value of the x component of the composite control.
torque required for this maneuver,

In turn, the first flexible mode was given
an initial amplitude equal to 1.0% of L, to stay
within the linear range, Figs, 6-7 show the tran-
sient responses. Also depicted is the result of
intraflexible modal coupling (Fig, 6). For this
control strategy, the disturbance in the flexible
mode, for the initial conditions considered herein, -
is damped in 15 seconds while its effect on the
attitude angles takes almost 25 seconds to dis-
appear,

VI. Conclusions

1. The SCOLE system, with gravity-gradient tor-
ques included in its open-loop dynamics, is
unstable. This is due to the inertia distri-
bution of the system in the particular con-
figuration where the Shuttle roll axis naminally
follows the orbit.

‘2. In the absence of control forces and torques,

the system will oscillate about an equilibrium
position biased from the Shuttle's symmetry
axes, This phenomenon is due principally to
the offset of the beam attachment to the re-
flector from the reflector's mass center,

3. A robust control law based on the linear regu-

lator theory can be implemented for station
keeping with maximum control efforts signifi-
cantly below saturation levels.
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ITT.

RAPID SLEWING OF THE ORBITING

SPACECRAFT CONTROL LABORATORY EXPERIMENT
(SCOLE) USING LQR TECHNIQUES

Abstract

The rotational equations of motion, describing
the dynamics of the (rigidized) proposed orbiting
Spacecraft Control Laboratory Experiment during
the station keeping phase, are derived using the
Eulerian formulation. When the attitude angles
(roll, pitch, and yaw) are assumed small, a sta-
bility analysis 1s conducted for the system. It is
seen that the pitch equation decouples from the
roll and yaw equations when the interface betweenthe
mast on the reflector is not offset or the offset
is only along the Shuttle roll axis. When a
second offset is introduced along the pitch axis
the system and when the gravity-gradient torques
are present in the dynamics, the system assumes a
new equilibrium.position. The linear regulator
theory is used to derive a control law for the li-
tnear model of the rigidized SCOLE. This law is
applied to the nonlinear model of the same con-
figuration of the system and preliminary single
axis slewing maneuvers (200 amplitude) are simu-
lated.

I. Introduction

In several versions of a recent paper,
scoLE(L) (Spacecraft Control Laboratory Experiment),
LLawrence W. Taylor, Jr. and A.V. Balakrishnan have
Hdescribed the ground based experimental program
which is to be used to test techniques derived for
pctive control of flexible space structures. It

s a laboratory experiment based on a model of the
huttle connected to a flexible beam with a re-

lecting grillage mounted at the end of the beam
(Figure 1). The interface connecting point between
khe reflector grillage and the beam is offset in
two cartesian directions with respect to the center
pf mass of the reflector. As a part of the design
challenge, the authors stressed the need to di-
rectly compare competing control design techniques
pnd discussed the feasibility of the such direct
comparison. The challenge consists in slewing the
pforementioned model line of sight through 200 in
minimum time.

Based on the equations describing the motion
pf the SCOLE system, provided in reference 1, the
expression for the reflector line of sight (LOS)
prror was exganded analytically and studied
karefully.(2 The results showed that the SCOLE's

,rigid.

LOS error is independent of the Euler yaw attitude
angle so, only two, instead of originally three,
angular parameters were needed to be concerned
with in designing-the. pointing..slew. maneuvers. It
was also suggested that a two stage control strat-
egy which would first slew the whole system, as if
rigid and then damp out the residual undesired
mast vibrations, 1s most appealing. The numerical
simulation test results of Reference 2 indicated
that the single axis bang-bang or bang-pause-bang
slew maneuvers work fairly well for pointing the
LOS of SCOLE. The best pointing accuracy and
shortest slew time were attained when using the
Shuttle torques and the actuators placed on the
reflector while imposing a 5 degree/second slew
rate limit on the design.

In the present study, a mathematical model of
the SCOLE system is developed assuming: the
Shuttle, the mast, and the reflector to all be
This development 1s based on the Eulerian
approach. The technique consists in isolating an
elemental mass of the system and deriving its
angular momentum taken at the mass center of the
orbiter.(3) The expressions obtained for the
elemental masses of the components of the system
are integrated over the mass of the entire system
‘to yield its angular momentum about the center of
the Orbiter. The time derivative of the system
angular momentum is then equated to the gravity-
gradient torques of the system about the same
point. Such a vectorial equation, when projected
along the three axes of rotation, yields the sys-
tem rotational equations of motion. These equa-
tions are then linearized to yield a model which
provides the basis for the control law synthesis
developed in this study.

I1. Development of Equations of Motion

The rotational equations of motion for the
system will be derived by taking the time deriva-
tive of the angular momentum of the system at G,
the center of mass of the Shuttle, 'and by equating
it to the external torques applied to the system.

A. Angular Momentum of the Shuttle about its
Mass Center, G.

The angular momentum of the Shuttle, taken as
a rigid body, about its center of mass, G is
Hssc = Issc %s/xg 1S
where =; is the inertia tensor, with elements
Igq, of éﬁe Shuttle and ig/gy the Shuttle's
inertial angular velocity, with components Qy,
i = x,y,z, along the Shuttle's symmetry axes.

mAST 1S
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B, Anuglar Momentum of the Rigid Beam about G

The angular momentum of the beam about the
- Shuttle mass center, G, can be expressed as

<> [ -
HH/G - IM/G nR where M/C is the inertia

tensor of the beam transferred at G, using the
parallel axis theorem.

- MLZ - ~
Hyg == 37 (O 1408, 0 @

where M is the mass of the beam whose length is L.

C. Angular Momentum of the Reflector about G

Since here the beam is considered rigid, the
reflector can be assumed to be located at a con-~
stant distance from G.

Using the transfer theorem?*for the angular
momentum, the angular momentum, H , of the
reflector, assumed rigid, about G can be ex-
pressed as:

# T, T, +M Tx— (& (3
R/G R/G, "R/R My C6x 3¢ 1)|r,
where I , the inertia temsor of the reflector
expresse lqg Gy, its center of mass, and QR/RO =

Q (where rp 18 the inertial angular
vgfgcity of tﬁc Qeflector.

D. Angular Momentum of the System about G

The angular momentum of the system about
G,Hgyst/G» 18 given by the sum of the angular

momentum of each of the three components evaluated

about the same point, G:

ﬁsyst/c = Big )6 + Hyo *+ Hysg

or H
r syst/G

= ﬁxi + ﬁy3 + ﬁzi %)

E. Rotational Equations of Motion (Torque Free)

The rotational equations of motion for the
system, when free of all external torques, are
obtained as:

e

d >
-EE-(Hsyst/G)IRO = “syst/G/R

+ =D (5)

;) i
S/Ry X Beyst/c
The vector equation (5) itself is equivalent to
H +Q H -9 H =0
x y 'z z'y
Hy + Rz Hx -Qx Hz =0

Hz + Qx Hy -Qy Hx =0 (6)

III. Stability of the SCOLE
in some of its Configurations

Equations (6) describe the torque-free non-
linear dynamics of the SCOLE configuration. In
what follows, the stability analysis of the
"rigidized" SCOLE system will be conducted in threer
different steps for the cases where the Shuttle's
roll, pitch, and yaw displacement amplitudes
(V,6,¢ respectively) are assumed small.

First, it will be assumed that the interface
.point between the beam and the reflector is the
‘reflector center of mass; second, still assuming, .
*the mast tigid, the interface point will be offset
"in the "X" direction; finally, a two dimensional
offset of the interface point will be introduced.
The mast will still be assumed rigid. The system
dynamics, in all the aforementioned cases, includes
the gravity-gradient torques.

-

A. The SCOLE System without Offset.

Tn the absence of offset in the location of
the interface point (X=Y=0), with gravity-gradient
torques present_in the system, Equations (6) can
be rewritten as”?:

. ) ) . .
i1, #MLS/3 + MLS + 1 - ¢I. - -1, + 1
5, M RI] s 54 wo¢[ s,* Ts,

S R

+ I, 4L, I, + 1]
1 B R TRy

2 2
- waol, ~oswlI, -1
0%%s, 0" s, s,

+1, -1. -M2/3 -MRL2 +3(1; - L) =0 (7)

Ry 'Ry

p 2,2 2 2
0 [152+1R2+MRL L /314308 (1, -1,)43ugT,= 0 (8)

I +é (I, +1.) +uwy I
S, Sy " Ry o* *s,

2
+ T - - - -
I.-I. +I +1 1] wo¢[Is Ig

53 S, R Ry Ry 1 S
2
+I - I ] -mow[ls + 314] =0 (€)]
1 2 4
where I, is the Shuttle's xz product of inertia

and 1 the composite system inertias with
respect £o the Shuttle axes. It is seen that in
.such a configuration, in the linear range, the
‘equation describing the pitch motion (Equation
(8)) of the system decouples from the equations
describing the motion in the two remaining degrees
of freedom (Equatioms (7) and (9)).

Equation (8) can be recast in the following
form:

eh1 - 8h2 + h3 =0 (10)
in which, ‘
2
2 ML
h1 = IS + IR + MRL + —3—
2 2
h, = 3m2 (I, - I,) and h, = 3w2 I
2 0 '3 1 3 0 74
cRE\ g A
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The homogeneous part of Equation (10) yields the
following solution:

=C th +C e—6t

% =0 2

wvhere

§ = vh,/h

2’1

since for this configuration, h,/h 0, eh(t)
is unstable. Thus, in the absence of control,
the system is seen to be unstable in its pitch
degree of freedom.

Equations (7) and (9) which have the follow-
ing forms, respectively,

vk, + ¢k, - oky + ok, - vkg
Wnl + ¢n2 + $n3 - ¢n4 + wns =0

can be recast in the following state matrix
format:

2.
—
—
)
—

<

o o
S o
o w
- o
e e

<
1]
<.

¢J ‘_-P6 —p8 -ps -P7 J

-©

b

Some of the eigenvalues of the state matrix,
in this subcase have positive real parts, based
on the actual SCOLE system parameters indicating
instability in the open loop dynamics of the roll
and yaw degrees of freedom.

B. The SCOLE System with Offset in the "X"

Direction

The configuration analyzed in the previous
section is upgraded to the one considered here
by letting X be non-zero in the equations of
motion (6) and by setting the "Y offset" equal
to zero.

The equations of motion then become:

. ) )
w[Isl + ML/3 + ML 4-1Rl]

~6(I. + MXL) - éw. [I. +I. -1
5,7 'R o-'s, T Is, T Ts,

2,
wovLlg

2 -
R, ~ TR, of'ls,* M 3

2 ' '
3 R, -IRZ M L” 43(14 - 12)] =0

(11)
. )
2,2 4 MOy a0 20 0010
8 [182 + IRZ + M (X4LT) + 3 ]+3w09(11 ')
2
+ '3w0(154+ M XL) = O (12)

, . )
-¥ [ISA+ MXL] + ¢ [IS3+ 1R3+ M X]

“ where, h! =1

3.3

- I +I.+I_ +I ~-1I 1]
S S "S3 Ry Ry Ry
- moo [I l- 1 MRx ]

2
- g ¥ (3(Ig + M) = 0 13

+ wow[l

+ 1 - 1

S Ry

where I, represent the composite inertias about
the Shu%tle axes for this case and w, is the
(circular) orbital angular velocity.

Again, it is seen that in this configuration,
the pitch equation, (Equation 12), decouples from
the roll, (Equation II)) and yaw (Equation 13))
equations and can be rewritten as:

8hy - 6h) + b} = 0 (14)

2 2
N Sz+ IR2+ MR(X2+ L9)+ ML°/3

] : '
- Il), and h

[} 2,1 - 2
h, = 3w0(I3 3 3wo(Is

4

+ MRXL)
Here again, h /h is a positive quantity. By -
analogy with %he previous configuration,

]
8(t) = 8g cosh 6't + %g sinh 6't + h3/h2

(1-cosh &'t) (15)

with

§' = ¢/ ¢ ]
hy/hy

In the absence of control, it is seen that the

pitch angle is unbounded indicating an instability
in that degree of freedom.

A reasoning similar to the one previously
done for the case without offset, enables one
to recast Equations (11) and (13) in the following
state matrix format:

i = A X or

1T r
o 1 1 o[y
¢ o o0 o0 1 ¢
vi Lepy p B P3| | ¥
4] [-pg  -P5 Pg -P; | | 4] (16)

pl, 1 =1+ 8 are defined in terms of the k, andn,
similar to the case without offset, and appro-
priate K., n1 now include the effects of the X
offset.5” Here again it is seen that some of the
eigenvalues of the state matrix, A', have positive
real parts. Therefore, the open loop dynamics of
the system are seen to be unstable in its roll

and yaw degrees of freedom.

C. The SCOLE System with Offset in Both the "X"
and "Y" Directions

If once more the description of the system
dynamics is upgraded by introducing the "Y offset',
the rotational equations of motion become:

CRIGINAL Pags g
OF POOR Q"r



. EEF 2 2 _"
w[rs + 1R1+ 7 * M (Lo Y )] o1,

1 z

- . 2
-BM XY —¢w0[151+ 1S3 + MY -152+ I, + I

1 3
. 2
-1 ] -0 M YL - oyl -1 + 1 -1
R, oMy 0"*'s,” s, "Ry R,
2 2 ML 2 2
+HR(Y ey - 3+ 3(1zz Iyy)]~w0¢1xz-3w061xy
2 =
+wo[MRYL + 31yz] 0 (17)
. Egg 2 2 .
9[152+ 3 * 1R2+ M (LS + X )] + PMLYL
+@MRXY + w M XY = w M, YL + mg¢MRYL - 3wgw1xy
+3“§°(Ixx‘lzé) + 3mngz =0 (18)

. s 2 .

¢[Is + I, + M (X+ Y )] - VI,
3 N3

+mow[ls +I -+ 41 -1

1 53 S R

2 B Ry Ry
+2MRY2] - éMRYL - wgd M XY + 3wgeryz

2 2
~w2p (4T ) = whel1 -1, +1 -1
0 Xz 0 S1 S2 Rl 2

+MR(Y2-X2)] - wBM XY = 0 (19)

R

It should be noted here that the pitch equa-
tion no longer decouples from the roll and yaw
equations. Equations (17), (18), (19) can be
recast in the following state matrix format

X=A" X+ C or

] o o o 1 o o ol o
8 0 o o o 1 0 ) 0
¢|"Jlo o o o6 o 1 ol + 1o
Y a, a, a; a, & 36 Y 49
3 3 8 319 23 2| |° 320
L4 L213 314 215 216 217 28] L 0] 221
(20)

where, the a, are functions of the various com-
ponent inertias and the X,Y offset parameters.d

Since the Shuttle axes do not correspond to
the principal axes of the system, the system
dynamics appear in the following state form:

X = Aoffset X+cC (21)
where A .. .. = A" form Eq. (20) indicating that
the system gauilibrium position is no longer
Yo" 8 "¢ "0

Let y_, 6 _, and ¢ _ be the equilibrium position

for this configuration of the system. Then,

V=y, +n;andy = ny
6= ee + ) ? = ?2
¢ 9.+ Ny ¢ = Ny

3.4

. ,The new state vector is [n » Nyy n3. ﬁl’
U n3]T. Also ¥, ee,and¢e:salisf

8 we + 8 ee + a5 ¢e " 89

a7 we + ag ee + 89 ¢e = 820

33Ve * 4,0 t a5, T 8y

and this simultaneous system can be solved to de-
termine ¥, ee, ¢e.

After substituting the new state vector in
the equations describing the-system dynamics,
linearizing them about the new equilibrium posi-
tion, recasting them into a state format, one
arrives at [n i = [a wJ [ni]. The real parts
of three of the new State mitrix eigenvalues are
found here to be positive indicating that the open
loop system in this configuration is also unstable,

IV. Control Synthesis

First, within the linear range, the motion of
the rigidized SCOLE is controlled using a strategy,
based on the linear regulator problem when the
system is subjected to some small perturbations in
its degrees of freedom; second, the control stra-
tegy derived for the linear model of the rigidized
SCOLE is applied to the non-linear model of the
same configuration. Preliminary slew maneuvers
are tested by assuming single axis initial per-
turbations of 20° in the roll, pitch, and yaw de-
grees of freedom, respectively. The three Shuttle
torquers and the two actuators on the reflector
(Fig. 1) are then assumed to be the only sources
of control moments. The controllers are seen not
to reach saturation.

A. Control of the Linearized Model of SCOLE

During the control of this model, it is

assumed that the actuators located on the mast

(proof masses) are not activated. As a result, the
system is controlled by means of the Orbiter
torquers and the actuators located on the re-
flector (Fig. 1).

Since the Shuttle is equipped with three
torquers acting about the x,y, and z directions,
the total control torque available can be written
as .

> - -
T ={Mxe + 130Fy vy) i+ (HyUy-l30 Fx vx)j
+ (MzUz + 32.5vax + 18.751"‘y vy)k} ft.-1b
with the limits for M , M and M_ = 10,000, ft.
1b; F. and F_ = 800 1§.1 *he constraints, there-~

fore,xare

o le 15 Jul< 15 10 lc 15 v, |< 15 and

v <1
ylZ
where U, the control vector is expressed as

U= [vl, vy, Upy Uy, U3]T, while the control
influence matrix can"theR be written as:
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0
130F
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-130F, 0

X
32.5F_ 18.75F
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[= =]
o

z-
The optimal control U which minimizes a per-
formance index

J= f (X'Qx+UTRU) dt
0
is given by
U= -kX = -(R 1BTP)x

where P is the positive definite solution of the
steady state Ricatti matrix equation.6 The
equations describing the closed loop system can
be recast in the following matrix format:

X = AX + BU

. . e oT
where A = Anew and X = [nl, Nys n3, Nys Ny n3]

from the discussion following Eq. (20). After
substitution of -KX for U, the closed loop equa=-
tion can be rewritten as

X = (A-BK)X

A parametric study was conducted by first
examining the variation of the real part of the
least damped mode as a function of different
values for the (assumed) diagonal Q and R
weighting elements (Figure 2). 1In this initial
study, each of the diagonal Q elements were
assumed equal i.e. Q=diag. [sQ] and also each of
the diagonal R elements were assumed equal R =
diag. [SR]. Figure 2 corresponds to a model of
the rigidized SCOLE system where the dimension-
ality of the state vector is 6 x 1 and 3 Shuttle
torquers plus 2 reflector actuators describe the
control inputs.

It can be seen from Fig. 2 that the best
closed-loop transient results are obtained from
using larger values of the state penalty along
with smaller values of the control penalty ele-
ments. However, when the closed loop dynamic
responses were simulated using the best combina-
tions of Q and R it was seen that some of the
controllers reached saturation levels for re-
sponses with initial conditions on pitch, roll,
and yaw taken within the slewing angle range
(i.e. approx. 0.3 rad.).

As an alternative, the concept of split
weighting of both the state and control penalty
elements was considered, initially for the rigid-
ized SCOLE model. Since the roll (and to some
extent also the pitch) are easier motions to
excite than the yaw, due to the SCOLE moment of
inertia distribution, it seems intuitively correct
to relax the penalty of these control inputs as
contrasted with the remaining control penalty
elements. Also since both position and rate
feedback of the Shuttle rotational motion will be

utilized, it appears logical to place a far greater

penalty on the (angular) position displacements.
Based on this philosophy and by trial and error,
the set of Q and R which produced the largest
absolute value of the real part of the least
damped mode (while at the same time avoiding sat-
uration during 20° single axis slewing maneuvers)
was selected as

Q = diag. [5x1012, sx10'2, sx10%2, 1, 1, 1 ]
and R = diag. [1, 1, .1, .2, 1]

For this set of Q and R the closed log eigenvalues
for the rigidized SCOLE model are galcgulated

R(xi) Im(ki)
=0.431436E+02 0.431436E4+02
-0.431436E+02 -0.431436E+02
-0.132023E+03 0.132023E+03
-0.132023E+03 -0.132023E+03
~0.328320E+03 0.328320E+03
~0.328320E+03 -0.328320E+03

It has been assumed here that all the state vari-
ables are available at each instant (observabi-
lity matrix = 16).

The closed loop dynamics has been simulated
for transient responses to a 6° initial perturba-
tion in roll. Figure 3 shows that a 6° perturaba-
tion in roll is damped out in approximately 13
seconds. During that single axis maneuver, it
should also be noticed that the coupling disturbs
the yaw degree of freedom, which reaches a max-
imum amplitude of 0.25° degree. Figures 3a, 3b,
and 3c show, for the 6° maneuver about the roll
axis, the forces required from the reflector
actuators, the efforts produced by the Shuttle's
torquers, and the components of the equivalent
total torque acting on the SCOLE system, respec-
tively. The reflector '"y" actuator and the
Shuttle's "x'" torquer are the more active con-
trollers for this maneuver, as expected.

B. Rigidized SCOLE Preliminary Slew Maneuvers

In this section, the equations governing
the motion of the rigidized SCOLE, outside of the
linear range, are developed from the most general

rotational equations of motion previously derived.
The control laws obtained from the application of

the linear regulator theory to the linearized mo-
del of the rigidized SCOLE are tested for large
amplitude manuevers. The closed loop system
dynamics are numerically simulated. For single
axis slew maneuvers about the roll, pitch, and
yaw axes, respectively, the time responses for
the Euler angles, the control efforts required

of the reflector actuators, control torques
demanded from the Shuttle's torquers, and the
components of the total control moments, are
depicted in the subsequent figures. This enables
one to determine the margin left in which to opti-
mize the control strategy without causing satura-
tion of the controllers.

The equations governing the motion of the
rigidized SCOLE system during large amplitude
maneuvers in the presence of gravity-gradient
and control torques are obtained as:

ORI
OF POUR

3.5



i) The Roll Equation

Hx + ﬂy Hz - ﬂz Hy - Tx (22)
ii) The Pitch Equation
Hy+ Qz Hx - Qx Hz = Ty (23)
1ii) The Yaw Equation
H +0Q H -0 H_ =T (24)
z Xy y x z
where T and T  are the components of the

excerna} to¥ques ac%ing on the system (including -
the control torques previously derived for the
lirear model of the rigidized SCOLE where the
feedback now depends on the original Euler angles
and their rates for maneuvers made relative to
the Shuttle roll, pitch, and yaw axes).

The closed-loop system dynamics described by
Equations (22), (23), and (24) have been numer-
ically simulated and the results are shown in
Figs. 4 to 7. Tig 4 shows the time responses to an
initial 20° alignment in roll. It is seen that a
20° slew about the roll axis can be achieved in
about 30 seconds.

For this control strategy, the single axis
slew maneuver about the roll axis uses 80% of the
control forces available from the corresponding
actuator located on the reflector, and 80% of the
control torque available from the corresponding
Shuttle torquer. None of the controllers reach
saturation. Also depicted in the Fig. 7 are
the components of the total control moments for
this case (moments of the reflector control forces
raken about the Shuttle's mass center, plus moments
of the Shuttle's torquers). This will make pos-
sible a comparison between this strategy and other
future control laws which would be based on the
two point boundary-value problem,7 where this

‘or combinations of control inputs may be employed.

Similar results have also’ been simulated for slew
maneuvers about the Shuttle's pitch and yaw axes.>

V. Conclusions

In conclusion, it is seen that: a) a control
strategy derived from the linearized model of the
rigidized SCOLE based on the linear regulator
theory, works well when it is used for single
-axis slew maneuvers through amplitude angles

} as large as 20°. For the case of the yaw axis
slew maneuver” (where the control effort does not
benefit directly from the long moment arm provided
by the mast) by suitable adjustment of the gains,
it is possible to achieve a slew in approximately
100 secs. with the use of up to 90% of the Shut- .
tle's (yaw) saturation torque. In comparison
with the results of Ref, 7, where fast slews of
order of 10~20 secs are accompanied by series of
bang-bang type control efforts in more than one
control input, the results here provide a definite

trade-of f between the slightly increased slew times

‘with the considerable reduction in over-all con-
trol effort; b) the SCOLE system, with gravity-

gracdient torques included in its open-loop dynamics,

is unstable. This is due to the inertia distri-
bution in the particular configuration where the
Shuttle roll axis nominally follows the orbit;
and ¢) the equation describing the pitch motion

decouples, within the linear range, from the roll
and yaw equations, when the gravity-gradient tor-
ques effects are present in the system dynamics,
and when the mast attachment point on the reflec-
tor is not offset or when the offset is parallel
to the roll axis.
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v, A NUMERICAL APPROACH FOR SOLVING RIGID SPACECRAFT

_ MINIMUM TIME ATTITUDE MANEUVERS

Abstract

The minimum time attitude slewing motion of a rigid
spacecraft with its controls provided by bounded torques and
forces is considered. Instead of the slewing time, an integral
pf a quadratic function of the éontrols is used as the cost
function. This enables us to deal with the singular and
nonsingular problems in a unified way. The minimum time is
determined by sequentially shortening the slewing time. The
two-point boundary-value problem is derived by applying the
Pontryagin's Maximum Principle to the system and solved by using
a quasilinearization algorithm. A set of methods based on the
Euler's principal axis rotation are developed to estimate the
unknown initial costates and the minimum slewing time as well as

to generate the nominal solutions for starting this algorithm.
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It is shown that one of the four initial costates associated
with the quaternions can be arbitrarily selected without
affecting the optiﬁal controls and, thus, simplifying the
computation. Several numerical tests are presented to show the

applications of these methods.

Introduction

The problems of large-angle attitude maneuvers of a
spacecraff have gained much considerations in recent years.1l-9
In these researches, the configurations of the spacecraft
considered are:'(l) completely rigid; (2) a combination of rigid
and flexible parts, or (3) gyrostat-type systems. The
performance indices usually-include minimum torque integration,
power criterion, and frequency-shaped cost functionals, etc.
Also some of these investigations utilize feedback control
techniques. In this paper, the minimum time attitude slewing

control problem of a rigid Spacecraft is considered.

In Ref. 2, the problem of the rapid torque~limited slewing
of the rigidized SCOLEl about a single axis (x-axis) is
considered. The control torque about this axis is of a bang-bang
type or a bang-pause-bang type. The control laws are developed
based on a simplified model of the SCOLE and then used on the
practical model (with nonzero products of inertia); hence, this
leads to a large error of the attitude after the slewing. Also
it seems that no details were given for the controls about the

other two axes (y, 2z).
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In the present paper, the optimal control theory (Maximum
Principle) is applied to the slewing motion of a general rigid
spacecraft (including the rigidized SCOLE, without
simplification). The slewing motion need not be restricted to a
single-axis slewing. The computational procedure based on a
quasilinearization algorithm is developed to solve the resulting

two-point boundary-value problem.

Euler Rotation and State Equations

The attitude of a rigid spacecraft can be described by
either a quaternion vector g=[qp q1 q2 q3]T, which satisfies a

constraint equation, gTg=1l, or a direction cosine matrix C,

1

2 2 2 2
q0+ql—q2—q3 2(q1q2+q0q3) 2(q1q3—q0q2)
) 2 2 2 2
C = Z(qlqz—q0q3) q0+q2‘q3-ql 2(q2q3+qoql) (1)
2 2 2 2
2(qlq3+q0q2) 2(q2q3—qul) q0+q3—q1—q2

It is known that a single axis rotation of the spacecraft

can also be expressed by a quaternion

qo=cos(68/2); gj=ejsin(6/2), i=1,2,3 ) (2)
where 6 is the angle of rotation , and ej are the direction
cosines of the rotation axis.

The Euler rotation theorem tells us that an arbitrary
orientation of a rigid body can be realized by rotating it about
a principal axis (eigenaxis) through a certain angle from its
initial position. The desired rotation quaternion, g, between
the initial position g(0) and the final orientation q(tf) can be

obtained by the following equation
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[ g ] [ 900 910 920 930 ] [ Q0f ]
q1 | = -q10 900 930 -920 q1f (3)
q2 -420 -4930 900 910 a2f

a3 | -a30 Q20 -qQ10 Qo0 | | 93f |

where the second subscript "g" and "g" represent the initial
time and final time, respectively. The angle of rotation and the
unit vector, e=[ej e e3]T, along this eigenaxis are

8*=2cos~lqg; ej=qi//1-qp2, i=1,2,3 (4)

The equations of motion of a rigid spacecraft are
q=(1/2)3q (5)

IW=GIW+Bu (6)
where W=[W; Wy W3]T is the angular velocity vector, B is a
3xn control influence matrix, u=[uj us uj -+ uylT is the

control torque and force vector, and

Ij1 -I12 -I13

I= =I12 I22 -I23
| =I13 -I23 I33
.0 w3 =Wy 0 :—UT
Q= -W3 0 AN , o = '“'g':‘
| Wo -0 0 “ o OJ, )

Premultiplied by the inverse of I, Eq. (6) can be rewritten as

@ =1"1010+1"1Bu (7)
The boundary conditions for the states, q and &, are given as

q(0), w(0); aqltg), Wite) ‘ (8)
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Optimal Control

Conventionally, the time optimal problem involved here is
to seek a solution of Egs. (5,7) satisfying the boundary
conditions (8) and minimizing the slewing time

te

tg= S (l)dt

0

The control variables must satisfy the constraints
|u|<uimax=uips i=1,2, ..., n. (9)
The Hamiltonion for this problem can be written as
H=1+(1/2)pT& q+rT(1-1& 1w +1~1Bu)

where p and r are the costate vectors associated with g and W,

respectively. They satisfy the necessary conditions:

p=-(3H/3q), r=-(3H/3W) ' (10)
By Pontryagin's Maximum Principle, the optimal control
minimizing H Ean be determined by

uj=-ujpsgn(BTI-1lr);, i=1,2, ..., n. (11)
which are of the bang-bang type, except for the singular case in
which (BTI"1lr);=0 over some non-zero time intervals. For the
nonsingular bang-bang optimal control problem, a shooting
methodl® was tried and failed due to the nonexistence of the
inverse of a partial differential matrix.

The singular problem does occur if a special case is
considered in the following. When B is a 3x3 unit matrix and I
is a diagonal inertia matrix, the control in Eq. (11l) is
simplified as

uj=-(ujp/Ijj)sgn(ri), i=1,2,3 (12)
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If the state boundary conditions are such that a single
principal axis (say, about axis 1) slewing is desired, then a
solution satisfying the necessary conditions (10) and equations

(5,7) for this problem can be obtained as

q0(0)#0, qq(0)#0, q2(0)=q3(0)=0,
Wi1(0)#0, Wo(0)=wW3(0)=0;

q0#0, q1#0. 92=q3=0,

Po#0, P1#0, p2=p3=0,

Wy#0, o= W3=0; r1=0, ro=r3=0,
uj=-(ui1p/I1i)sgniry), uz=u3=0.
The solution ry=r3=0 implies a singular control problem because
us and u3 can not be determined by Eg. (12). The possible
existence of a singular solution in the general minimum time
problem suggests that a unified method be needed to handle both
singular and nonsingular cases.

In some papers3s8, the integral of the sum of the squares

of the torque components has been successfully used as a cost
function, where -there is no constraint on the control and the
minimum time is not required. However, if some constraints on
the control are added to this problem and the total slewing time
is shortened sequentially, this problem may approach the minimum
time control problem. These considerations motivate a successive
approximation approach to éolve the minimum time control problem.
In this approach, an integral of a quadratic function of the
controls is formally used as a cost function, i.e.,
te
J=(1/2) fo uTRuat (13)
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where R is a proper weighting matrix. It has been shown that38,
for the case of rest-to-rest slewing with only 3 control inputs
involved and with a longer slewing time used, the controls are
approximately linear functions of time and do not reach their
saturation ‘levels. Therefore, when tf is shortened, some of the
controls can be expected to reach their bounds and contribute
more effort to the slewing. By the successive shortening of tg,
a particular value, tg¢*, called the minimum time, can be
obtained, during which either some (singular case) or all
(nonsingular case) of the controls are of the bang-bang type.
Apparently, in the approach described above, it is
unnecessary to determine in advance whether the problem is
singular or not and there is no need to determine the sﬁitching

points as required in some other methodslO.

Necessary Conditions

The Hamiltonion for the system (5,7,13) is then
H=(1/2)uTRu+pT & q+rT(1-1 & 1w +1-1Bu) (1)
where the costates, as before, satisfy the following necessary

conditions for minimizing J,
f>=-(aH/aq), or 15=(l/2)§p (15)

r=-(3H/3w), or r=g(w ,r)+(1/2)[qlp | (16)
where g(w, r) is a 3x1 vector function of w and r, and its

detailed form can be found in Appendix A; [gq] is a 3x4 matrix ‘
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d1 -90 -do a2
[al= |a2 a3 -q0 -1
93 ~492 91 -~90
The initial values of p and r are unknowns.
The weighting matrix R in Eq. (13) is chosen as
R=BTB (17)
which is generally an nxn semi-positive-definite matrix, because
the rank of the 3xn matrix, B, is assumed to be 3. Weighting
matrices other than that given by Eqg. (17) may also be possible
candidates.
From the necessary conditions (9H/3u)=0, we have
Ru+BTI-1r=0
or
BTBu=-T1-1r (18)
Premultiplying both sides of Eq. (18) by (BBT)-1lB, one obtains,
Bu=-I‘1f
By usiﬁg the pseudo-inverse of the matrix B, B*, one can get u,
u=-B*1~1lr=-gT(BBT)-1(1-1r) (19)
The control laws are thenll
uj=-ujpsgn(Btr-1lr);, if I(B+I-1r)i|2uib7 (20a)
or .
uj=-(B*1-1lr);, if |(B+1-1lr)y|<uyy (20b)
i=1,2, ..., n.

note that when B is a 3x3 nonsingular matrix, Bt=p—1l.
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A Linear Relation between g and p

Before starting to solve the two-point boundary-value
problem, it is useful to consider a relationship between q and
p. It is already pointed out in Ref. 9 that

p=rpq
where p is an arbitrary constant. However, one can find out that
there does exist a linear relation between p and q in this
problem,
| p(t)=Dq(t) (21)
where D is a 4x4 constant matrix. To determine the constant
elements of D, Eq. (21) is substituted into the differential

equation for p in Eq. (15), with the result,

Dg=(1/2) & Dq (22)
The q in Eq. (22) is then replaced by Eq. (5),

D(1/2) & q=(1/2)& Dq - (23)
Since Eq. (23) is valid for arbitrary q, one has

D@ =8p
This relation is true for arbitrary values of w only whgn D has
the following form
[dg -4 -d; -d3]
p= |d1 dp -d3 dj (24)
da ds dp =-d;

d3 -dz d1 dg]
and these constants, dg, d3, d3, d3, can be determined by
setting t=0 in Eq. (21). With the use of Eq. (24), the relation

(21) can be rewritten as
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'pPo] [90 -91 -92 -q93] [do]
P1|=]91 9q9o0p 493 -q2 d; (25)
P2 92 -93 d9p 91 d2
P3| {93 Q2 -91 9goj (43

After substituting Eq. (25) into Eq. (16), there results

| r=g(w, r)-(1/2)cd (26)
where d=[d} dj d3]T, Cc is just the attitude matrix, Eq. (1). It
can be seen from Eq. (26) that r is independent of dg. It is
also true that u is independent of dp because u depends only on
r in Egs. (20). This means that the arbitrary selection of 4y
yields the same extremum control, u. It is noted that a special
choice of dg can lead to the equivalént conditions considered in

Refs. 3 and 9. With the use of Eg. (25), one can get

2 .2 .2 .2
dy+dy+d5+d3=pT(0)P(0) (27)

Since the choice of dg is independent of the choice of 4;, dj,
and d3, a minimum value of the left side (hence the right side)
of Eq. (27) is reached when dp=0. This is the solution
considered in Ref. 3. Also from Eg. (25) one can get
do=pT(0)q(0)
When dp=0, this equation gives a constraint on p(0). It is
suggested in Ref; 9 that this constraint be used in thé
nuﬁerical iterations. But the choice of dg other than zero is a
more general result for thiskgkoblem. It is not necessary to
keep dp=0 in each step of the computation. It is enough to keep
one element of p(0) unchanged which is easier to.use than the

approach suggested in Ref. 9, especially when q(0)#[1 0 0 0]T.
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Initial Values of Costates and the Slewing Time

Since the Euler rotation brings the attitude of the
spacecraft from an initial quaternion to a final required
quaternion through a simple rotation, it may take less time and
consume less energy; it is reasonable to choose this rotation as
a candidate for the starting solution of the iteration and hope
that the optimal slewing is near the Euler rotation. This
rotation will be called the "expected rotation”, which is
determined'only by q(0) and q(tg).

The angular velocity and its derivatives for the Euler

rotation can be expressed as

O=6e, w =0e, & =Be ' (28)
where 8(t) is the rotation angle and e=[ej e; e3]T is a unit
vector along the the rotation axis (eigenaxis) which is
determined by Eq. (4). Considering the analytical solution about
a single principal axis maneuver in Ref. 3, © can be defined the

same way about e,
8(t)=0(0)+8(0)t+(1/2)8(0)t2+(1/6)8(0)t3 ' (29)
where 6(0), é(O), 3(0), and'g(O) can be determined from the

boundary conditions of 6(t) and 8(t) at t=0, and t=tg.

Without loss of generality, one can choose

~.

8(0)=0, O(tg)=6* > (30a)

where 0% is given in Eq. (4), and

8(0)=6g, O(tge)=b¢ (30b)
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The value of 6o in Eq. (30b) needs to be determined from a given
initial angular velocity vector, w(0). Generally, this vector
will not coincide with &(0), the angular velocity of the Euler
rotation at t=0, defined in Eq. (28), therefore, a difference

vector, £, between them exists,

€ =6ge- W(0)

Since only an approximate starting solution of the
quasilinearization method is needed, it is enough to choose a éo

which minimizes gT¢. By differentiating €T with respect to 8
and noting that eTe=1, one can get
8o=eT w(0) (31)
A similar derivation for éf can be obtained.
For the special case of éf=0, the substitution of Egs. (30)

into Eq. (29) will result in

8(0)=(66%/t£2)-(48¢/te) (32a)
B(0)=-(1208*/t£3)+(68p/ts2) ' (32b)

To approximately determine the initial values of p and r,
Egs. (7) and (26) are needed. By substituting u in Eq. (19) into

Eq. (7) and solving for r, one can get

r=I&Iw-I12 & (33)
r=(d/at)(ITIw )-124 (34)
At the same time, Eq. (26) can be rewritten as

d=2CcT[g(w,r)-r] (35)
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Replacing W in Egs. (33-35) by the relations (28-32) at t=0,
one can get the approximate values of r(0) and d. p(0) can be
determined by letting one of its elements equal a constant (say
po(0)=constant, if q(0)=[1 0 0 0]T) and by using Eq. (25) to
solve for dp and other elements of p(0).

The'étarting solution needed in the quasilinearization
algorithm may be obtained by integrating the differential
equations (5,7,15-16,20) using the initial conditions p(0) and

r(0) obtained above, as well as q(0) and w(0).

Initial Value of t¢

Generally, to obtain the minimum time, one can always
choose a longer slewing time, tg, at the beginning of the
algorithm, and shorten it sequentially thereafter. But this may
take more time, especially when how far the initial choice is
from the real minimum time is not known. Therefore, a good
initial value of tf being close to and larger than the minimum
value is desired. For simplicity, only an estimation procedure
of tf for the case in which B is a 3x3 unit matrix is discussed
here. Suppose the slewing motion is an Euler rotation about a
vector, e, through an angle, 6(t). By using the relations for

in Eq. (28) into Eq. (6), one can get

Ief=028Ie+u

which can be expressed as the following 3 similar equations

aj6=b;62+cjty, i=1,2,3 (36)

where aj and bj are constants, cj=ujp, and 7j is the normalized
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control about the ith body axis and
|Tij<1, i=1,2,3

The 3 equations of Eg.(36) must be simultaneously valid for
the same 6(t). Each of them with the boundary conditions, (30),
can be congidered as a minimum time control problem and solved
analytically to obtained a minimum time (Appendix B). Since each
of the minimum times for the associated equation means a lower
bound of time during which the equation is solvable (no matter
whether this equation is treated as a minimum time control
problem or not), the largest one of these minimum times should
be chosen as the initial value of tg used in the computation.

A computation procedure has been developed which contains a
series of cycles. The slewing time is chosen at the beginning of
each cycle and fixed throughout the cycle. During each cycle, a
quasilinearization algorithm called the method of particular
solutionsl?2 is used to solve the linearized state and costate
equations. If this algorithm converges, a check is then made as
to whether some (singular case) or all (nonsingular case) of the
controls are of the bang-bang type. If yes, this slewing time is
designated the minimum time. If not, the assumed tf should be
shortened and the next cycle begins.

The numerical experience of using this procedure tells us
thét, for each cycle, the slewing time can not be made less than
a certain Qalue; in particular, it can not be made less than the
real minimum time. Otherwise, the algorithm in each cycle will
not converge. The closer the tf is to the real minimum time, the
less shortening is required for the tg assumed in the previous

cycle. ‘ 4.14



Numerical Results

The methods described in the previous sections are applied
to the SCOLE slewing motion. Fig. 1 shows the SCOLE
configuration. It is composed of a Space Shuttle and a large
reflecting antenna. The antenna is attached to the Shuttle by a
flexiblelﬁeam. Since only the motion of the rigid SCOLE is
considered in this paper, the flexibility of the beam is
ignored. The X, Y, and Z axes are the Shuttle axes corresponding
to the roll, pitch, and yaw axes, respectively. The controls
considered in this paper include three moments (uyx=uj,uy=uy,
uz=uj) about the X, ¥, and Z axes and two forces (fy=uy, fy=ﬁ5)
applied at the center of the reflector in the X and Y
directions. The inertia parameters of the SCOLE and the
saturation levels of the controls arel:

I;1=1132508, I2=7007447, I33=7113962,

I;9=-7555, I53=115202, Ij3=52293 slug-ft2;

ujp=10000 £t-1b, i=1,2,3;
ujp=800 1lb., i=4,5
The associated control influence matrix, B, in Egqg. (6) is
1 0 0 0 130
B= 0 1 0 -130 0
0 0 1 32.5 18.75

Some numerical results are presented in the following.

(a) The singular case discussed in the previous sections
for the SCOLE configuration without offset and for a symmetrical
Shuttle Ij=I33=0. For this case ohly the three Shuttle control

torquers are used. The boundary conditions of the attitude are



'such that the "expected rotation" is a single principal axis
rotation. The computations show that when the slewing time
approaches the minimum time, the control about the the slewing
axis approaches the bang-bang type. The other two controls
remain zero and there is no indication that they are going to
make contributions to speed up the slewing. This result may
imply that the singular solution is the time optimal solution
for this case; otherwise additional control effort should
participafe in the slewing and a smaller slewing time should be
obtained by using this algorithm.(

(b) The example of Ref. 3 is computed to test the method of
determination of the initial costates. The results show that the
guessed.initial costates are very close to their converged
values. To obtain the converged values (to seven digits), only 5
iterations are needed in this computation.

(c) The non-diagonal inertia matrix of the SCOLE and only 3
controis (a3, up, u3) are used in this case. The expected
rotation is a 20 degree, rest-to-rest rotation about one of the
three spacecraft axes. Only the results for the "X-axis slewing"
are given here because the results for the "Y-axis and Z-axis
slewings" are similar. Figs. 2‘show the time histories of the
controls and attitude angles (1-2-3 Euler angles) for this
maneuver. Due to the non-zero offset of the inertia disfribution
of the SCOLE configuration, the controls; uy and uz, are no
longer zero as they were in the singular case (a), but now are
of the bang-bang type. The initial estimation of the minimum

slewing time, tg, obtained using the method discussed in the
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previous section , is tf(°)=12.5749 sec, which is very close to
the minimum time, t¢*=12.563034 sec, obtained in our computation.

Fig. 3 shows the control torques for the "X-axis slewing"
described in case (a) but for a slewing time, t§=15.37 sec,
which is 2.8 seconds more than the minimum time, tg*. The
controls are almost linear functions of time. uj is less than
the saturation level; ujy; and u3 are near zero. By comparing
Fig. 3 with Fig. 2a, one can see that much more control effort
(approximate 50%) is saved by using a little longer slewing
time. Another feature of using a longer slewing time in the
computation is that it needs fewer iterations for convergence
than by using a shorter slewing time. These properties imply
that, in the practical application of this problem, it is not
necessary to seek exactly the minimum time, tg*, and the
associated extremum controls. It may be enough to know the
approximate values of tf* and the controls.

(d) Following case (c), two additional controls, u4q and ug,
corresponding to the thrusters on the reflector are used.
Figs. 4 show the controls and attitude angles for the "X-axis
slewing”. The minimum time, tf*=3.9805382 sec, is greatly
shortened as compared with case (c). Figs. 5 show the controls
and attitude angles for the "Z-axis slewing". The minimum time
is tg*=15.1441 sec. Unlike the case for the X-axis slewing, the
attitude angle 0y experiences a larger amplitude, though the

expected rotation is about the Z-axis. This phenomenon is due to
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the unsymmetric distributions of inertia about the X and Y axes.
The closer the slewing is to ?he minimum time, the larger the
amplitude of the 0y.

(e) A general case is coﬁsidered. Suppose the SCOLE is in
an Earth orbit and the line of sight is to be directed toward
the center of the Earth. The orbit coordinate system (x,y,z) is
shown in Fig. 6. The initial attitude of the spacecraft is
assumed as follows: the Y axis coincides with the orbital y
axis, and the angular difference between the X and x (or Z and
z) axes is «=7.897224212 ‘deg . The initial quaternion is,
then, q(0)=[cos(%/2) 0 sin(%/2) 0]T. According to Ref. 1, the
unit vector along the line of sight in the rigid SCOLE
coordinate system is

Rros=[.1112447 -.2410302 .9641209]1T
The direction cosines of the orbital z axis in the SCOLE system
at the initial time are £/g=[sin«¢ 0 cos«]T. The angle between
Rrog and £/B at the initial time is 610g(0)= ﬁLOS‘g/B=20 deg .
The eigenaxis of the expected rotation in the SCOLE system is
determined by

e=(ﬁLOSx£/B)/|§LOSx£/B|

The final required attitude quaternion can be obtained by using
Egqs. (3-4).

The guessed minimum time for the case where only 3 controls
are involved in this maneuver is tf=26.3487 sec . This value is
very close to the converged value, tf*=25.003175 sec . It would
be interesting if this estimation is compared with the result by

solving the following classical minimum time control pfoblem,
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I8=u, lu| <Umax
where I is the moment of inertia about the principal line and u
is the torque about that line, 6 is the angle of rotation. For
the present case, the result obtained from the second method is
tg=19.58 ,sec . A possible explanation for the large differenée
here is that the classical problem greatly simplifies the
inherent three dimensional nonlinear dynamics associated with
the genergl SCOLE configuration.

Figs. 7 show the controls and attitude angles for case (e)
where ug and ug are also used. The minimum slewing time is
obtained as tg*=8.691397 sec . The 8p0g in Fig. 7b is the angle
between the line of sight and the line of the target direction

(from the spacecraft to the center of the Earth).

Conclusions

A useful numerical solution procedure for the minimum time
attitude maneuver control problem of a rigid spacecraft has been
developed and successfully applied to some practical examples.
It can handle both the singular and nonsingular cases. It is
shown through examples that the estimation methods used here for
the initial costates and the minimum slewing time are quite
useful. The control profiles obtained in this paper may be

useful for further research.

4.19



References

lpaylor, L.W. and Balakrishnan, A.V., "A Mathematical Problem
and a Spacecraft Control Laboratory Experiment (SCOLE) used to
Evaluate Control Laws for Flexible Spacecraft ... NASA/IEEE
Design Challenge", Jan., 1984. (Proceedings of the 4th VPI&SU
Symposium on Dynamics and Control of Large Structures,
Blacksburg, VA, June 1983)

21in, J.G., "Rapid Torque-Limited Line-of-sight Pointing of
SCOLE (Spécecraft Control Laboratory Experiment) Configuration,"”
AIAA/AAS Astrodynamics Conference, Williamsburg, VA, Aug. 1986,
AIAA paper 86-1991.

3Junkins, J.L. and Turner, J.D., "Optimal Continuous Torque
Attitude Maneuvers," Journal of Guidance and Control, Vol. 3,
No. 3, May-June 1980, pp. 210-217.

4skaar, S.B. and Kraige, L.G., "Large-Angle Spacecraft
Attitude Maneuvers Using an Optimal Reaction Wheel Power
Criterion," The Journal of the Astronautical Sciences, Vol. 32,
No. 1, Jan.-~-March 1984, pp. 47-61l.

S5Chen, J. and Kane, T.R., "Slewing Maneuvers of Gyroétat
Spacecraft," The Journal of the Astronautical Sciences, Vol. 28,
No. 3, July-Sept. 1980, pp. 267-281.

6Turner, J.D. and Junkins, J.L., "Optimal Large-Angle
Single-Axis Rotational Maneuvers of Flexible Spacecraft,"”
Journal of Guidance and Control, Vol. 3, No. 6, Nov.-Dec. 1980,

pp. 578-585.

4.20



7Chun, H.M. and Turner, J.D., "Frequency-Shaped Large-Angle
Maneuvers," AIAA 25th Aerospace Sciences Meeting, Jan. 12-15,
1987, Reno, Nevada, AIAA paper 87-0174.

8Bainum, P.M. and Li, F., "Optimal Torque Control SCOLE
Slewing Maneuvers," 3rd Annual SCOLE Workshop, Nov. 17, 1986,
NASA Langley Research Center, Hampton, Virginia.

vadali, S.ﬂj, Kraige, L.G. and Junkins, J.L., "New Results

the Optimal Spacecraft Attitude Maneuver Problem," Journal of

on

Guidance and Control, Vol. 7, No. 3, May-June 1984, pp. 378-380.

10rastman, G.J., "A Shooting Method for Solving Two-Point

Boundary-Value Problems Arising from Non-Singular Bang-Bang

Optimal Control Problems," Int. Journal of Control, Vol. 27, No.

4, 1978, pp. 513-524.

llyeo, B.P., Waldron, K.J. and Goh, B.S., "Optimal Initial
Choice of Multipliers in the Quasilinearization Method for
Optimal Control Problems with Bounded Controls," Int. Journal
Control, Vol. 20, No. 1, 1974, pp. 17-33.

12Miele, A. and Iyer, R.R., "General Technique for Sdlving
Nonlinear Two-Point Boundary-Value Problems Via the Method of
Particular Solutions," Journal of Optimizatiom Theory and

Applications, Vol. 5, No. 5, 1970, pp. 382-399.

4.21

of



Appendix A The Term g( w, r) in Eg. (16)

The term Il &Iw in Eq. (7) can be expressed as

11 §1 w=[F:G] W
and .
' = 2 2 2 T
W=[ W] Wy W3 Wtz Gau 0]
where F and G are 3x3 matrices whose elements are constants
associated with the inertia parameters of the spacecraft. Then

the term rTI"1@d 1w of the Hamiltonion, H, in Eq. (14) has the

form

h=rTI-1STw=[f; £, £3 £, £5 £61T @
where fi are
[£1 £o £3]1T=FTr, [f4 f5 £¢lT=GTr
The term g( W, r) in Eq. (16) can be obtained by
2£7  fg fs | [w1
g( W, r)=-(3n/dw)=- | fg 2f3 f4 A
| fg £, 2f3] |“B

Appendix B Solution of Eg. (36)

Eq. (36) can be rewritten as

ai§=biéz+citi _ (36)
For simplicity, only the solutions for the following boundary

conditions are considered here

8(0)=0, 8(0)=0; 6(tg)=0%, 8(tg)=0 , (B-1)
Suppose aj#0, bj#0 and let b=bj/aj, c=cj/aj (suppose c>0), one

can rewrite Eq. (36) as
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é=bb2+cT (B-2)
Since the control for this problem is of a bang-bang type with
only one switching point, by integrating Eq. (B-2) and using Eq.

(B-1), one can get
8=[c(e2b8-1)/b]1/2, for T=1; (B-3)

8=[c(1-e2b(8-08%*))/p]1/2, for .t=-1 (B-4)
By equating Eqs. (B-3) and (B-4), one can get 8=8g and 6=6g at
the switching point, t=tg,

8g=(1/2b)1n[2/(1+e~2b8%*)]

8g=[c(e2bbg-1)/p]1/2

Finally, by integrating Egs. (B-3,4) and using Eq. (B-~1l), one

can get
tg=cosh~l(e~bP8s) //~bc, b<0;
or
tg=[ (7/2)-sin"1(e~bP8s)]//bc, b>0
and .
te=tg+[ (T/2)-sin~1(eP(8*-8,))]/4/~Bc, b<o0;
or

tg=tg+cosh™1(eP(8*-05)) //Bc, b>0

For the case é(O)#O, similar solutions can be obtained.
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Fig. 3 X-axis slewing, tg=15.37 (s)
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V.I

ASPECTS OF COMPUTATIONAL REQUIREMENTS FOR CONTROLLER IMPLEMENTATION

Discretization of Continuous Controllers:

The full state variable feedback of the form
U = KX (1)
is usually proposed to control a linear plant given by
i = AX + BU (2)
using techniques such as pole placementl, Linear Quadratic Gaussian/
Loop transfer recovery (LQG/LTR)Z, H°° techniques3, etc. The imple-
mentation of the controller given in (1) and the generally needed
state estimator are implementéd using a microprocessor and thus
the stability of the discretized control law aé a function of the
discretization step size is to be evaluated.
To this end, the system dynamics and the coﬂtrbl law as given
by (2) and (1) are discretized using Euler's schemé as:
X(i+l) = (I + A(A+BK)) X(4i) (3)
with
U (i) = KX(i) (4)
Balas4 has shown, usiﬁg Lyapunov's stability criteria, that the stable
continuous control law given by (2) is stable in the discrete time

domain provided

Amin

T

A (A

PA )
max C Cc

where
Q = any positive definite matrix

P is the solution of the Lyapunov's equation
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PA +A P+Q=0
C c

Ao (), ( ) are the minimum and maximum eigen-
min ' max
values of the matrices in the parenthesis

A = A+ BK
c

The disadvantage of the criteria (5) is its dependence on an
arbitrary Q matrix and thus the absolute maximum value of A cannot

be obtained.
An improved stability criteria can be developed using the

modal transformation on the closed loop system

X = (A + BK)X (6)
or X = ACX @)
as X=Tgq (8)
q9=4Argq (9
where A = diag (Al, Xgs wees An)
Ay = ith eigenvalue of the matrix Ac and the eigenvalues

are assumed to be distinct.

The same transformation is applied to equation (3) as5
q(i+1) = T (1+ AADT q (1) (10)
or .
qz(1+l) = (1+ Axg) qz(i) (11)

L =1,2,..., n.
The fth difference equation is stable in the discrete time

domain provided

|1+ Axll <1 (12)

or (1 +20)% + (a0)” < 1 (13)
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where

A =g +3juw (14)

520, + A(ozz + w£2)>< o (15)

thus, for stability, from the mathematical viewpoint, A either must

be negative and (202 + A(OQZ + wzz)) must be positive which is

practically unrealistic or, practically,for positive A,

-201
A < 5 5 (16)
(cr'Q + w2 )

It can be observed that A will be positive as ¢, is negative for a

2
stable continuous control system. Thus the absolute maximum tolerable

value of A is given by

A = min (——t—) | an

on all % where g,= —czwi, w,= /IZZZZ wé and Qi is the undamped
natural frequency of vibration.

From the relation (17), it can be observed that the tolerable
discretization step size, A, decreases with decreased damping ratio
aﬁd increased maximum natural frequency of vibration as A can be
approximated as (2gz/w£). The stability of the continuous time con-
trol system with repeated closed-loop eigenvalues is not considered
here and will be attempted in the current grant period.

Example: A typical large space struct-ure6 with a maximum natural
frequency of vibration, wé, of 1HZ (2nrad/sec) is considered. The
continuous controller is designed to provide 107 damping in all the

modes and thus
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A
- - ' = —
0'2 ;2 mg 0.2 (18)
= ' - 2 =
wl wz v/]. CQ, 27
Thus
A < 32 milli-seconds (19)

The closed-loop control system given by
X = (A + BK)X | (20)

can also be discretized as:

e(A+BK)A

X(i+l) = X(1) : (21)

(A+BK)A

The eigenvalues of the matrix e are the same as the

eigenvalues of the similarity matrix T‘1 eAAT where T and A are
matrices given by the relations (8) and (9). As a result, the
stability of the system (21) is decided by the eigenvalues of the

matrix eAA. Therefore, the magnitude of the eigenvalues of the

. AA
matrix e must be less than 1.

i A A
1€ e 2] < 1  for all g (22)
or sy -
' Ie(ozj-sz)A[ < 1 for all & (23)
And thus the following relation has to be valid for all £,
czA
le ™ | <1 (24)

The maximum A can be evaluated as the minimum of the Az's given in
relation (24). The maximum A given by relation (17) is an approxi-

mation of the value given by relation (23).
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V.II, Computational Requirements for Estimator and Controller:

The estimator and the controller that are generally implemented using

. . . . X 7
a microprocessor are described in the discrete time domain as’:

X(i+l) = A, X(1) + B ¥(d) (25)

V(i) =KX (1) . (26)

Y(i) = CX(1) 27
where

i =n x 1 estimated state vector or a transformed

state vector

<
[]

m x 1 input vector

Y

2x1 measurement vector
Ae’Be’K’C are appropriately dimensioned matrices.
The minimum computational requirements are obtained through a modal trans-
formation of the state vectér, X, resulting in a diagonal system matrix Ae'
Thus the arithematic and analog to digital (A/D) conversion for sensors
and digital to analog (D/A) conversion operations required to implement
equations (17), (18) and (19) are as follows:

No. of multiplications = n 4+ n?2 + nm

No. of additions = nt + nm (28)
No. of A/D conversions = %
No. of D/A conversions = m

Thus for a state of the art math-coprocessor such as Intel 80387 with
25 MHZ clock and 10 KHZ sampling rate, the following are the typical times
required for various computations. (Floating point arithematic is assumed for

fastness and the range of values representable.)8
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Clock cycles Average Instruction
(range) cycles
Multiplication (Cm) 32-57 45 FMUL
Addition (C,) 29-37 33 FADD
A/D conversion (Ad) 0.1 msec - -
D/A conversion =0 - -
(negligible)

Thus assuming that the number of actuators (m) and the number of
sensors.(l) are a fraction of the number of states (say £ = m = en) the
computational time (Ct) required to generate control signals from the

continuous measurements is given by:

Ct = n(14+2cn) Cm + n(2en) Ca + en Ad (29)
thus

C, = n(1+2n) 1.8 + 2en?(1.32) + en(100) in 1 seconds (30)
or c, = 6.24en° + n(1.8 + 100€) (31)

Thus fhe number of modes that can be handled by a microprocessor of the

80387 type to ensure stability of a large space structure with e = 0.25
and A = 30 msec can be evaluated from the equation
6.24 en® + n(1.8 + 100¢) < 30x10° (32)
> 1.56n% + 26.8n - 30x10° = 0 (33)
thus
-26.8 +/(26.8) %+4x1.56x30x10>
1,2 7 2 x 1.56 (34
n, = 147.53

The second root of the equation (33) being negative can be neglected.
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The number of modes, being equal to half the number of states, that
can be handled by a microprocessor of the type 80387 is approximately equal
\ to 74. Thus the exact discretization step size and the number of modes
that can be handled by any given microprocessor can be arrived at by
following the procedure given in this section and eliminating the assumptions made
such as the actual times for A/D and ﬁ/A conversions, design safety factor
for maximum A, et cetera. For a more stringent A value, the relation

given in (24) can be used.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Mathematical models have been developed to predict the open and
closed-loop dynamics of the‘orbiting Spacecraft Control Laboratory
Experiment (SCOLE), both during station keeping and, alsq during
rapid slewing maneuvers of up to 20 deg. amplitude. It is seen that,
in the presence of gravity-gradient torques, thé system assumes a
new equilibrium position primarily due to the offset in the (flexible)
mast attachment point to the reflector's mass center. A robust
control law based on an application of the linear regulator theory can
be implemented for station keeping with maximum control efforts be-
low saturation levels.

For the slewing of a completely rigidized model of the SCOLE the
LQR techniques can be ekteﬁded to provide for relatively rapid slewing
about each of the Shuttle's geometrical axes through amplitudes of up
to 20 deg. These results can be compared with those provided by the
numerical solution of the two point boundary value problem (TPBVP)
associated with Pontryagin's Maximum Principle, where the slightly
faster slewing times are coupled with an increase in the over-all
control effort. >In connection with the latter approach, the minimum
time attitude slewing of a rigid spacecraft has been examined with an
integral of a quadratic function of the controls used as the cost
function. Both singular and nonsingular problems can be treated in a
unified manner. The resulting nﬁmerical solution. to the TPBVP is
based on a quasilinearization algorithm. General three dimensional
slewing maneuvers (e.g. SCOLE antenna line of sight slewing) can be

handled.




Extensions to the important problem of minimum time and near
minimum time slewing will include the effects of flexibility in the
subsequent grant yeér. A trade-off will need to be established between
the rapidity of the slewing maneuver, control effort required by the
variously placed actuators, and tﬁe ability to suppress the vibrational
(flexible) amplitudes during and immediately following the slew.

Finally, attention has also been focused on certain aspects of
computational requiremepts for large space structural controller imple-
mentation. An improved stability criterioﬁ is developed for a con-
troller, designed to function in the conﬁinuous time domain, but which
receives discretized obsefvational inputs. An expression relating the
maximum tolerable discretization step size to the undamped frequency
and damping ratio of any mode in the continuous time system model has
been developed. Future (on board) computational requiremehts are
evaluated based on a current state-of-the-art microprocessor , assuming
that the number of actuators and sensors are a selected fraction of
the number of state components.l Additional future attention to com-

putational requirements should also be based on the mathematical models

of the SCOLE system whose development has been completed during this

-grant period.
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